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Abstract. A method is formulated to extend the field of application of the energy sudden 
(adiabatic) and centrifugal sudden approximations in scattering calculations. Ti-.? method 
consists in applying the approximations in limited radial intervals and only to the coefficients 
of linearly independent solutions of uncoupled equations. This gives rise to a trans- 
formation on each of the channel wavefunctions at the points separating the intervals. We 
have tested the method in a two-channel model with good results. 

En the past few decades the theories of nuclear and molecular scattering have shown a 
number of parallel developments, such as the common application of the Feshbach 
theory of resonances and the semiclassical theory for molecular scattering as compared 
with the scattering of heavy ions in nuclear physics. The present paper is devoted to 
another common field of interest: the development of methods to reduce the compu- 
tational effort in coupled-channel calculations?. The coupled-channel theory of 
(in)elastic scattering and reactions is based on the expansion of the wavefunction, 
describing the total system of the collision partners, in a set of states for the internal 
degrees of freedom and the relative angular motion. The expansion coefficients depend 
on the relative distance r. For each r they give the relative probability amplitudes for 
the various states of internal degrees of freedom and angular motion. They satisfy 
Sclirodinger’s equation, here in the form of a set of coupled radial differential 
equations. 

Until some years ago, the DWBA (distorted wave Born approximation) was a 
common method to simplify this set of equations. The coupling terms are then treated 
as a first-order perturbation. More recently, the interest has shifted to a more exact 
treatment, able to deal with stronger transitions and more-step processes. Solving the 
full coupled equations, subject only to an inevitable truncation of the set of internal and 
angular states, is now a widely adopted procedure. Such calculations are often very 
cumbersome, especially due to the rapid increase of the computational effort with the 
number of channels included. From this point of view it is desirable to introduce, 
besides new numerical methods, physical approximations which are more justified than 
the DWBA. 

i One of the difficulties which stand in  the way of easy communication between the two fields is the different 
terminology. The coupled-channel method for nuclear reactions is commonly referred to as the close- 
coupling method in molecular scattering. 
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In the following we shall consider two of these. We start with the coupled-channel 
(cc) equations. In matrix notation these equations have the form 

R”(r) = A(r)R(r),  (1) 
where a prime denotes differentiation with respect to the radial distance r, R is an 
N-dimensional vector and A is an N X N matrix. The problem of finding solutions to 
these equations is simplified considerably if there exist r-independent Hermitian 
commutators of A :  [ C, A] = 0. As is well known this gives rise to a partial decoupling of 
the problem. 

In the situation that we consider, the matrix A itself does not have such com- 
mutators, but it has after subtraction of a constant diagonal matrix D :  A = D +(A - D ) .  
In the adiabatic or energy sudden (ES) approximation (Verhaar and Schulte 1977, 
Schulte 1978, Khare 1978), the elements of this matrix D are essentially differences of 
excitation energies of the scatterer. In the ES approximation these are assumed to be so 
small that the matrix A can be replaced by (A-D) .  Usually this is interpreted 
classically to correspond to slow internal motion of the scatterer. 

In another approximation, which is referred to as centrifugal sudden (cs )  approxi- 
mation in molecular scattering theory (Inopin 1966, McGuire and Kouri 1974), the 
matrix D has a simple l / r 2  radial dependence. The angular-momentum-dependent 
centrifugal barrier is replaced by a constant one. The matrix D contains the differences 
between these barriers and thus is r-dependent. Again, the matrix D is neglected. 

Essentially due to the introduction of additional commutators the ES and cs 
approximations have been shown to give rise to a considerable simplification of the 
scattering problems to which they are applicable. In this paper we propose a method by 
which the field of application of the approximations can be extended. Let us first look at 
the ES approximation from a classical point of view. If the internal motion of the 
scatterer is not slow enough to permit it to be considered as ‘frozen’ during the entire 
collision, it may still be slow enough to permit frozen internal coordinates for shorter 
time intervals. 

Inspired by this observation, in the stationary quantum-mechanical description we 
correspondingly subdivide the I axis in a number of limited radial intervals. In each 
interval we neglect the matrix D. As mentioned above, this is advantageous for finding 
solutions R. At the interval boundaries we apply a certain transformation on the 
solution to correct for neglecting the matrix D. Thus each component of the solution R 
has discontinuities at the points separating the intervals. The kind of transformation to 
be applied is suggested by a second observation. 

Over larger radial intervals outside the interaction region the ES wavefunction R 
provides a bad approximation: differences in channel wavenumbers, determined by the 
elements of the matrix D, no matter how small, give rise to arbitrarily large phase 
changes in ingoing and outgoing waves at large distances. A better approximation is 
obtained if the ES approximation is only used to calculate the coefficients of ingoing and 
outgoing waves, i.e. the S matrix. Classically this procedure means that the internal 
degrees of freedom need to be frozen only during the interaction process. Outside this 
interval the exact evolution of the system is trivial. 

This leads us to define in the interaction region for each of the channels i, a pair of 
basis waves together with their adiabatic counterparts and to determine for each of the 
radial intervals the matrix transforming the coefficients of the waves on one side of the 
interval into those on the other side, using the ES approximation. This matrix is then 
taken over in the exact case but to transform the coefficients of non-adiabatic waves. 
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The latter are then defined so as to take into account correctly the amplitude and the 
phase changes due to ‘diagonal propagation’ within the channels. To ensure this we take 
them to be (easily obtainable) linearly independent solutions f ,  and g, of equation (l), 
including only the diagonal part of A. We write 

R:  = a l f : +  b,g: 

the coefficients being r-dependent in general. The adiabatic basis waves are similarly 
defined by equation (1) with A replaced by the diagonal part of A - D. The above- 
mentioned transformation is unique as soon as a correspondence between adiabatic and 
non-adiabatic waves f l  and g, is defined. We make use of the freedom in choosing f, and 
g, to make the adiabatic and non-adiabatic transformations from rl to r2 as closely 
identical as possible, in the following sense: the matrices are to be identical to the 
highest possible order in h = r2 - r l .  This requirement can be handled by expanding the 
transformation matrix following from the differential equations: 

Rl = a, f l  + b,g, 

a = g, A,( ajfi + bigj) 
j #  i 

- f i  c Aij(ajh + bigj) 
j # i  

in a Taylor series around rl and identifying for each of the matrix elements adiabatic and 
non-adiabatic terms of equal order in h. The differential equations are derived by (a) 
differentiating the previous expression for R, and equating it to the expression for R:, 
(b) differentiating the latter and relating it to the functions R, through equation (l), and 
(c) making use of the uncoupled equations for fl and g,. 

We find that the adiabatic and non-adiabatic basis waves (E, g, and f i ,  g,, respectively) 
shall be equal in rl,  together with their first derivatives. As a consequence the 
corresponding coefficients too are identical in rl and the procedure of taking over the 
adiabatic transformation matrix from rl to r2 reduces to taking over the adiabatic 
coefficients in the non-adiabatic case, i.e. combining them with a pair of non-adiabatic 
basis waves. Distinguishing also other adiabatic quantities with a bar, the trans- 
formation at r2 thus takes the form: 

where a tilde denotes our corrected solution. From the differential equations (2) we find 
that in rl: 

6‘ = b ‘, 
1 I ,  

2 ’. = a ’. 

a i  - a j ,  1 1  

1 1  

- b !I = b !I -11 - I1 

As a consequence the corrected solution at r2 has a value and a derivative correct to 
order h2 .  The coefficients start to differ in the order h3, so one would expect a 
discrepancy in our corrected solution in this order. It turns out, however, that the 
corrected value is correct to one order higher, due to compensation of h3 errors in the 
coefficients di and &. This compensation does not take place in the case of the first 
derivatives. It follows that our corrected solution is better by two orders in h, compared 
with the adiabatic solution, both with respect to value and to first derivative. Because in 
many cases the adiabatic approximation is not so badly satisfied, it is expected that our 
method will then give good results with subdivision in only a small number of intervals. 
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It should be noted that the results obtained with our method converge to the cc result 
with increasing number of intervals. 

Note furthermore that the linear transformation (3 ) ,  i.e. 

has the convenient property that its determinant equals 1. As a consequence the 
generalised Wronskians for the coupled channels are conserved. The corrected solu- 
tions therefore share this feature with the exact cc solutions. 

With this our method is fully described. We want to make some additional remarks, 
which are of practical use when applying the method. The first one concerns alternative 
formulations of the method. In the given formulation a Taylor series expansion around 
rl  is used to obtain the optimal correspondence between exact and adiabatic basis 
waves. It is also possible, however, to make that expansion around r2, which results in 
equal function values and first derivatives in r2 ,  and in a transformation, similar to (4), of 
the adiabatic wavefunction at the beginning of the interval r l .  Therefore, in this case we 
start with a transformation at the beginning of the interval and after that we integrate 
adiabatically from rl  to r2.  The order of convergence in this formulation is the same as 
in the previous om. Which formulation is preferred depends on the variation of the 
coupling strength in the interval. 

Secondly, we point out that essentially the same method as described above can be 
applied if the cs approximation is considered, by itself or in combination with the ES 
approximation. 

We have tested our method in a two-channel scattering model. The two channels 
have different internal states and different orbital angular momentum 1. The potential is 
characteristic for nuclear scattering: 40 MeV nucleon scattering by a target nucleus with 
mass nuniber A = 60. The diagonal elements of the potential matrix have a Woods- 
Saxon form, and the non-diagonal elements are proportional to the first derivative of 
this form. The depth of the potential well is 50 MeV and the strength of the coupling 
potential corresponds to a deformation parameter p2 = 0.2. A Coulomb potential does 
not influence our conclusions essentially arid is not taken into account. 

-lo/- 

Figure 1. -4pproximate wavefunction -, compared with coupled-channel result - - -. Note 
the discontinuities at the interval separation points, where the adiabatic wavefunction is 
‘jacked up’ almost to the coupled-channel function. Vertical axis in arbitrary units. 
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We first consider the ES approximation. In figure 1 we show an example of a cc 
wavefunction, together with the wavefunction obtained with our method. Note the 
discontinuities between the intervals. Apparently the cc wavefunction is reproduced 
very well after correction. In figure 2 we show resulting S-matrix elements for a set of 

t 
L 6 8 

O L - ,  
2 

Number of intervals 

Figure 2. Typical S-matrix elements in the ES and cs approximations, as  a function of the 
number of intervals, compared with cc. The curves are guides to the eye. Given are Re 
(S2-J -, Im(S2.,J - - - and Im(S4+,) - . -. 

I = 2 and 1 = 4 channels, with excitation energies of 5 and 0 MeV, respectively, as a 
function of the number of intervals. In the same figure the horizontal lines give the 
corresponding cc results, with which we should compare our results. The intervals are 
chosen to be shortest in the coupling region (i.e. around the nuclear surface). Figure 3 
shows similar results for a second set of channels with the I values replaced by 6 and S, 
respectively. The convergence to the cc results is shown clearly. In table 1 some full S 
matrices are given for the first set of channels. The agreement of the ordinary ES 

approximation with the cc calculations is poor. Our method, however, gives already 
satisfactory results with subdivision into six intervals even for the large energy separa- 
tion of 5 MeV between the internal states. The accuracy is expected to be sufficient 
relative to the accuracy normally required for coupled-channel calculations in view of 
experimental errors. The results for other strongly coupled channels are comparable. 

The remaining curves in figures 2 and 3 give corresponding cs results. Table 2 again 
gives full S matrices relative to the cs approximation €or the second set of channels. The 
figures illustrate the general tendency of the cs values to be somewhat worse than ES 
values. This tendency is confirmed by S matrices based on the ordinary ES and cs 
approximations. In the cs case too we obtain satisfactory results, here with subdivision 
into eight intervals. Results for other strongly coupled channels are again similar. 

We conclude that the accuracy of our method is comparable with that of coupled- 
channel calculations. From the number of intervals needed in our calculations, it is 
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Table 1. Two-channel S matrix in two approximations: energy sudden plus corrections in 
six intervals and ordinary energy sudden approximation, compared with the coupled- 
channel result (for channel quantum numbers see text). 

0.75-0.001' 0.09-0.65i 
0.09 - 0.6Si 0.72 +0.22i 

0.74-0.00i 0.10-0.661' 
0.10-0.661' 0.70+0.22i 

Coupled channel 

Energy sudden approximation in six intervals 

0.45-0.251' -0.01 -0.85i 
-0.01 -0.8Si 0.46+0.241' 

Ordinary energy sudden approximation 

Table 2. S matrix in centrifugal sudden approximation plus corrections with subdivision 
into eight intervals, compared with coupled-channel result and ordinary cs result. 

0.51-0.781' 0.08+0.351' 
0.08+0.351' 0.80+0.481' 

) Coupled channel 

0.51-0.781' 0.08+0.35i 
) 0.08+0.35i 0.80+0.49i 

Centrifugal sudden approximation in eight intervals 

0.99 -0.071' -0.04- 0,121' 
-0.04 -0.121' 0.82 - 0,561' 

) Ordinary centrifugal sudden approximation 

expected that in actual calculations with our method a considerable reduction of 
computation time can be obtained with respect to coupled-channel calculations. It 
should be noted that in the foregoing illustrations of the principle and correctness of our 
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method we solved the ES and cs radial equations relative to the basis set of the more 
exact cc equations. The approximations, however, are advantageous only if we 
transform to a basis adapted to the above-mentioned commutators C. Calculations in 
this sense, comprising proton and alpha scattering by spherical nuclei in the ES + cs 
approximation are in progress. 
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